Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Di- μ-hydroxido-bis[aquatrichloridotin(IV)] diethyl ether disolvate

Minglei Yang, Handong Yin,* Li Quan, Liansheng Cui and Daqi Wang

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
Correspondence e-mail: handongyin@163.com

Received 15 September 2008; accepted 10 October 2008
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.023 ; w R$ factor $=0.063$; data-to-parameter ratio $=18.7$.

The title compound, $\left[\mathrm{Sn}_{2} \mathrm{Cl}_{6}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$, consists of a centrosymmetric molecule and two additional solvent molecules and has an infinite two-dimensional network extending parallel to (101). The Sn atom is six-coordinate with a distorted octahedral geometry. Additional $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding leads to stabilization of the crystal structure.

Related literature

For a related structure, see: Janas et al. (1991)

Experimental

Crystal data
$\left[\mathrm{Sn}_{2} \mathrm{Cl}_{6}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \quad V=1110.3(3) \AA^{3}$
$M_{r}=668.36$
$Z=2$
Monoclinic, $P 2_{1} / n$
Mo $K \alpha$ radiation
$a=10.1171$ (15) \AA
$b=10.0212$ (15) \AA
$\mu=2.99 \mathrm{~mm}^{-1}$
$T=298$ (2) K
$\beta=103.536(1)^{\circ}$

Data collection

Siemens SMART CCD area- 5168 measured reflections detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.340, T_{\max }=0.468$
$($ expected range $=0.297-0.408)$
Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023 \quad 102$ parameters
$w R\left(F^{2}\right)=0.063$
H -atom parameters constrained
$S=0.84$
1909 reflections

1909 independent reflections 1685 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O1-H1 } \cdots \mathrm{O}^{\mathrm{i}}}^{\mathrm{H}}$	0.93	1.88	$2.799(3)$	169
O2-H2D $^{\mathrm{ii}}$	0.85	1.89	$2.736(3)$	176

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$.
Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the National Natural Science Foundation of China (grant No. 20771053) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2266).

References

Janas, Z., Sobota, P. \& Lis, T. (1991). J. Chem. Soc. Dalton Trans. pp. 24292434.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Di- μ-hydroxido-bis[aquatrichloridotin(IV)] diethyl ether disolvate

M. Yang, H. Yin, L. Quan, L. Cui and D. Wang

Comment

We have synthesized the title compound unexpectedly, (I), and present its crystal structure here. The title compound consist of a centrosymmetric dimer (Fig. 1) in which the tin atoms have a distorted octahedral arrangement formed by three chlorine atoms, two hydroxy oxygen bridges and one water molecule. A further two water molecules are hydrogen-bonded to the hydroxyl oxygen atoms of the $\mu-\mathrm{OH}$ bridges. The $\mathrm{Sn}-\mathrm{O}$ distances in (I) (Table 1), are similar to those in related organotin carboxylates. The $\mathrm{Sn}-\mathrm{Cl}$ bond lengths and the interbond angles lie within the ranges observed for other related complexes. The Sn1-O1 (2.072 (2) \AA) and Sn1—O2 distance (2.183 (2) \AA), (Table 1), are close to those reported for organotin carboxylates (Janas et al., 1991).

Experimental

The reaction was carried out under nitrogen atmosphere. 3-Thiophenemalonic acid (1 mmol) and sodium ethoxide (2.2 $\mathrm{mmol})$ were added to the solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h . Phenyltin trichloride (1 mmol) was then added to the reactor and the mixture was stirred for 12 h at 338 K.The resulting clear solution was evaporated under vacuum. The product was crystallized from a mixture of diethylether/petroleum ether (1:1).Unexpectedly, a dimeric complex, was isolated from the filtrate. (yield 52%; m.p. 446 K). Analysis calculated (\%) for $\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}_{3} \mathrm{Sn}(\mathrm{Mr}=334.18)$: C,46.72; H, 4.49; O, 9.57. found: C, 46.52; H, 4.55; O, 9.62.

Refinement

H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.85$ and $0.93 \AA$ and $\mathrm{C}-\mathrm{H}=0.96$ and $0.97 \AA$ for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\mathrm{eq}}(\mathrm{C}, O)$ where $x=$ 1.5 for methyl H and $x=1.2$ for all other H atoms.

Figures

Fig. 1. The molecular structure of (I), showing 50\% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.

supplementary materials

Fig. 2. The infinite two-dimensional network structure of (I), H atoms have been omitted for clarity.

Di- μ-hydroxido-bis[aquatrichloridotin(IV)] diethyl ether disolvate

Crystal data

$\left[\mathrm{Sn}_{2} \mathrm{Cl}_{6}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$	$F(000)=648$
$M_{r}=668.36$	$D_{\mathrm{x}}=1.999 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
$a=10.1171(15) \AA$	Cell parameters from 4261 reflections
$b=10.0212(15) \AA$	$\theta=2.4-28.2^{\circ}$
$c=11.2641(18) \AA$	$\mu=2.99 \mathrm{~mm}^{-1}$
$\beta=103.536(1)^{\circ}$	$T=298 \mathrm{~K}$
$V=1110.3(3) \AA^{3}$	Block, colorless
$Z=2$	$0.46 \times 0.32 \times 0.30 \mathrm{~mm}$

Data collection

Siemens SMART CCD area-detector

 diffractometerRadiation source: fine-focus sealed tube graphite
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.340, T_{\text {max }}=0.468$
5168 measured reflections
1909 independent reflections
1685 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-11 \rightarrow 12$
$k=-11 \rightarrow 11$
$l=-7 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.063$
$S=0.84$
1909 reflections
102 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0489 P)^{2}+0.9726 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=1.05 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.68$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
Sn1	$0.53184(2)$	$0.46950(2)$	$0.361848(19)$	$0.02338(10)$
Cl1	$0.66543(10)$	$0.58991(10)$	$0.25532(9)$	$0.0421(2)$
Cl2	$0.70089(10)$	$0.30829(10)$	$0.44565(9)$	$0.0434(2)$
Cl3	$0.41097(10)$	$0.33403(10)$	$0.20324(9)$	$0.0470(2)$
O1	$0.4121(2)$	$0.4148(2)$	$0.48000(19)$	$0.0261(5)$
H1	0.3447	0.3497	0.4651	0.031^{*}
O2	$0.3762(3)$	$0.6222(3)$	$0.3036(2)$	$0.0402(6)$
H2D	0.3543	0.6636	0.2360	0.048^{*}
H2E	0.3425	0.6644	0.3549	0.048^{*}
O3	$0.8141(2)$	$0.7541(2)$	$0.5809(2)$	$0.0367(6)$
C1	$0.7894(5)$	$0.8615(4)$	$0.4926(4)$	$0.0518(11)$
H1A	0.7798	0.8260	0.4109	0.062^{*}
H1B	0.8653	0.9233	0.5091	0.062^{*}
C2	$0.6621(6)$	$0.9321(5)$	$0.5016(5)$	$0.0660(14)$
H2A	0.5884	0.8694	0.4895	0.099^{*}
H2B	0.6415	1.0003	0.4402	0.099^{*}
H2C	0.6746	0.9720	0.5810	0.099^{*}
C3	$0.9279(4)$	$0.6715(5)$	$0.5690(4)$	$0.0537(12)$
H3A	1.0075	0.7267	0.5730	0.064^{*}
H3B	0.9066	0.6263	0.4907	0.064^{*}
C4	$0.9561(5)$	$0.5717(6)$	$0.6692(5)$	$0.0720(15)$
H4A	0.9715	0.6168	0.7464	0.108^{*}
H4B	1.0355	0.5210	0.6650	0.108^{*}
H4C	0.8797	0.5128	0.6610	0.108^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cn1	$0.02419(15)$	$0.02519(15)$	$0.02104(15)$	$0.00006(8)$	$0.00583(10)$	$-0.00080(8)$
Cl1	$0.0446(5)$	$0.0476(5)$	$0.0398(5)$	$-0.0069(4)$	$0.0216(4)$	$0.0052(4)$
C12	$0.0438(5)$	$0.0454(5)$	$0.0423(5)$	$0.0216(4)$	$0.0127(4)$	$0.0053(4)$
C13	$0.0515(6)$	$0.0523(6)$	$0.0348(5)$	$-0.0129(5)$	$0.0053(4)$	$-0.0163(4)$

O1	$0.0273(12)$	$0.0281(12)$	$0.0234(12)$	$-0.0074(10)$	$0.0069(9)$	$-0.0028(9)$
O2	$0.0460(15)$	$0.0483(15)$	$0.0274(13)$	$0.0203(12)$	$0.0108(11)$	$0.0104(11)$
O3	$0.0334(13)$	$0.0435(14)$	$0.0355(14)$	$-0.0047(11)$	$0.0125(11)$	$-0.0029(11)$
C1	$0.071(3)$	$0.047(2)$	$0.037(2)$	$-0.023(2)$	$0.013(2)$	$-0.0013(19)$
C2	$0.076(4)$	$0.048(2)$	$0.063(3)$	$0.002(2)$	$-0.008(3)$	$0.011(2)$
C3	$0.034(2)$	$0.074(3)$	$0.056(3)$	$-0.002(2)$	$0.015(2)$	$-0.025(2)$
C4	$0.056(3)$	$0.064(3)$	$0.088(4)$	$0.020(3)$	$0.003(3)$	$-0.012(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

Sn1-O1	2.072 (2)	C1- C 2	1.493 (7)
Sn1-O1 ${ }^{\text {i }}$	2.090 (2)	C1-H1A	0.9700
$\mathrm{Sn} 1-\mathrm{O} 2$	2.183 (2)	C1-H1B	0.9700
$\mathrm{Sn} 1-\mathrm{Cl1}$	2.3413 (9)	C2-H2A	0.9600
$\mathrm{Sn} 1-\mathrm{Cl} 3$	2.3469 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9600
$\mathrm{Sn} 1-\mathrm{Cl2}$	2.3813 (9)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9600
O1-Sn1 ${ }^{\text {i }}$	2.090 (2)	C3-C4	1.485 (7)
$\mathrm{O} 1-\mathrm{H} 1$	0.9300	C3-H3A	0.9700
O2-H2D	0.8500	С3-H3B	0.9700
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{E}$	0.8500	C4-H4A	0.9600
O3-C1	1.447 (5)	C4-H4B	0.9600
O3-C3	1.449 (5)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9600
O1-Sn1-O1 ${ }^{\text {i }}$	71.48 (9)	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.0
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{O} 2$	83.66 (9)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.0
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Sn} 1-\mathrm{O} 2$	84.28 (9)	$\mathrm{O} 3-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.0
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl1}$	163.72 (7)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.0
$\mathrm{O} 1^{\text {i }}$ - $\mathrm{Sn} 1-\mathrm{Cl1}$	94.40 (6)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.4
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl1}$	86.96 (7)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{O} 1-\mathrm{Sn} 1-\mathrm{Cl} 3$	93.27 (6)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 1^{1}-\mathrm{Sn} 1-\mathrm{Cl} 3$	163.56 (6)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl} 3$	88.04 (8)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{Cl} 3$	99.69 (4)	H2A-C2-H2C	109.5
O1-Sn1-Cl2	92.27 (7)	$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{O} 1^{1}-\mathrm{Sn} 1-\mathrm{Cl} 2$	90.68 (7)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	109.3 (4)
$\mathrm{O} 2-\mathrm{Sn} 1-\mathrm{Cl2}$	174.32 (7)	O3-C3-H3A	109.8
$\mathrm{Cl1}-\mathrm{Sn} 1-\mathrm{Cl} 2$	96.06 (4)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.8
$\mathrm{Cl} 3-\mathrm{Sn} 1-\mathrm{Cl} 2$	96.16 (4)	$\mathrm{O} 3-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.8
Sn1-O1-Sn1 ${ }^{\text {i }}$	108.52 (9)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.8
$\mathrm{Sn} 1-\mathrm{O} 1-\mathrm{H} 1$	125.7	H3A-C3-H3B	108.3
$\mathrm{Sn} 1{ }^{\text {i }}-\mathrm{O} 1-\mathrm{H} 1$	125.7	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.5
Sn1-O2-H2D	129.1	C3-C4-H4B	109.5
Sn1-O2-H2E	121.4	H4A-C4-H4B	109.5
H2D-O2-H2E	107.7	C3-C4-H4C	109.5
$\mathrm{C} 1-\mathrm{O} 3-\mathrm{C} 3$	112.0 (3)	H4A-C4-H4C	109.5
O3-C1-C2	108.6 (3)	H4B-C4-H4C	109.5

sup-4

supplementary materials

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 3^{\mathrm{i}}$	0.93	1.88	$2.799(3)$	169.
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{D} \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.85	1.89	$2.736(3)$	176.
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{E} \cdots \mathrm{C} 2^{\mathrm{i}}$	0.85	2.40	$3.179(3)$	152.
Symmetry codes: (i) $-x+1,-y+1,-z+1 ;($ (ii) $x-1 / 2,-y+3 / 2, z-1 / 2$.				

supplementary materials

Fig. 1

Fig. 2

